GPU Programming
with Python

In this chapter, we will cover the following recipes:

» Using the PyCUDA module

» How to build a PyCUDA application

» Understanding the PyCUDA Memory Model with matrix manipulation
» Kernel invocations with GPUArray

» Evaluating element-wise expressions with PyCUDA

» The MapReduce operation with PyCUDA

» GPU programming with NumbaPro

» Using GPU-accelerated libraries with NumbaPro

» Using the PyOpenCL module

» How to build a PyOpenCL application

» Evaluating element-wise expressions with PyOpenCL

» Testing your GPU application with PyOpenCL

GPU Programming with Python

Introduction

The graphics processing unit (GPU) is an electronic circuit that specializes in processing
data to render images from polygonal primitives. Although they were designed to carry out
rendering images, the GPU has continued to evolve, becoming more complex and efficient in
serving both the real-time and offline rendering community and in performing any scientific
computations. GPUs are characterized by a highly parallel structure, which allows it to
manipulate large datasets in an efficient manner. This feature combined with the rapid
improvement in graphics hardware performance and the extent of programmability caught
the attention of the scientific world with the possibility of using GPU for purposes other than
just rendering images. Traditional GPUs are fixed function devices where the whole rendering
pipeline is built on hardware. This restricts graphics programmers, leading them to use
different, efficient and high-quality rendering algorithms. Hence, a new GPU was built with
millions of lightweight parallel cores, which were programmable to render graphics using
shaders. This is one of the biggest advancements in the field of computer graphics and

the gaming industry. With lots of programmable cores available, the GPU vendors started
developing models for parallel programming. Each GPU is indeed composed of several
processing units called Streaming Multiprocessor (SM) that represent the first logic level of
parallelism; and each SM infact works simultaneously and independently from the others.

Thread Execution Control Unit

v v ! v
SM SM SM SM SM SM
SM SM SM SM SM SM
SM SM SM SM SM SM
SP SP SP
SM SM SM SM SM SM
SP SP SP
SM SM SM SM SM SM
SP SP SP
Special Special Special
Function Unit Function Unit Function Unit
Local Local Local
Memory Memory Memory

Device Memory

|
[e

The GPU architecture

200

Chapter 6

Each SM is in turn divided into a group of Stream Processors (SP), each of which has a core
of real execution and can sequentially run a thread. An SP represents the smallest unit of
an execution logic and represents the level of finer parallelism. The division in SM and SP

is structural in nature, but it is possible to outline a further logical organization of the SP of
a GPU, which are grouped together in logical blocks characterized by a particular mode of
execution. All cores that make up a group run the same instruction at the same time. This

is just the Single instruction, multiple data (SIMD) model, which we described in the first
chapter of this book.

Each SM also has a number of registers, which represent an area of memory for quick
access that is temporary, local (not shared between the cores), and limited in size. This
allows storage of frequently used values from a single core. The general-purpose computing
on graphics processing units (GP-GPU) is the field devoted to the study of the techniques
needed to exploit the computing power of the GPU to perform calculations quickly, thanks

to the high level of parallelism inside. As seen before, GPUs are structured quite differently
from conventional processors; for this, they have problems of a different nature and require
specific programming techniques. The most outstanding feature that distinguishes a graphics
processor is the high number of cores available, which allow us to carry out many threads

of execution competitors, which are partially synchronized for the execution of the same
operation. This feature is very useful and efficient in situations where you want to split your
work in many parts to perform the same operations on different data. On the contrary, it is
hard to make the best use of this architecture when there is a strong sequential and logical
order to be respected in the operations to be carried out; otherwise, the work cannot be
evenly divided into many small subparts. The programming paradigm that characterizes

the GPU computing is called Stream Processing because the data can be viewed as a
homogeneous flow of values to which the same operations are applied synchronously.

Currently, the most efficient solutions to exploit the computing power provided by GPU cards
are the software libraries CUDA and OpenCL. In the following recipes, we will present the
realization of these software libraries in the Python programming language.

Using the PyCUDA module

PyCUDA is a Python wrap for Compute Unified Device Architecture (CUDA), the software
library developed by NVIDIA for GPU programming. The CUDA programming model is the
starting point of understanding how to program the GPU properly with PyCUDA. There are
concepts that must be understood and assimilated to be able to approach this tool correctly
and to understand the more specific topics that are covered in the following recipes.

201

GPU Programming with Python

A hybrid programming model

The programming model "hybrid" of CUDA (and consequently of PyCUDA, which is a Python
wrapper) is implemented through specific extensions to the standard library of the C language.
These extensions have been created, whenever possible, syntactically like the function calls in
the standard C library. This allows a relatively simple approach to a hybrid programming model
that includes the host and device code. The management of the two logical parts is done by
the NVCC compiler. Here is a brief description of how this compiler works:

1. It separates a device code from a host-code device.
2. ltinvokes a default compiler (for example, GCC) to compile the host code.

3. It builds the device code in the binary form (Cubin objects) or in the form assembly
(code PTX).

4. It generates a host key "global" that also includes code PTX.

The compiled CUDA code is converted to a device-specific binary by the driver, during runtime.
All the previously mentioned steps are executed by PyCUDA at runtime, which makes it a
Just-in-time (JIT) compiler. The drawback of this approach is the increased load time of

the application, which is the only way to maintain compatibility "forward", that is, you can
perform operations on a device that does not exist at the time of the actual compilation.

A JIT compilation therefore makes an application compatible with future devices that are

built on architectures with higher computing power, so it is not yet possible to generate

any binary code.

v

Run nvce —» .cubin

Kernel Invocation Upload to GPU QJ
PyCUDA
Run on GPU

The PyCUDA execution model

202

Chapter 6

The kernel and thread hierarchy

An important element of a CUDA program is a kernel. It represents the code that is executed
parallelly on the basis of specifications that will be clarified later with the examples described
here. Each kernel's execution is done by computing units that are called threads. Unlike
threads in CPU, GPU threads are lighter in such a way that the change of context is not one

of the factors to be taken into account in a code performance evaluation because it can be
considered as instantaneous. To determine the number of threads that must perform a single
kernel and their logical organization, CUDA defines a two-level hierarchy. In the highest level,
it defines a so-called grid of blocks. This grid represents a bidimensional structure where the
thread blocks are distributed, which are three-dimensional.

GRID 1
Block 1 Block 2
Thread 1 Thread 2 Thread 1 Thread 2
Thread 3 Thread 4 Thread 3 Thread 4
Block 3 Block 4
Thread 1 Thread 2 Thread 1 Thread 2
Thread 3 Thread 4 Thread 3 Thread 4

The distribution of (3-dimensional) threads in a two-level hierarchy of PyCUDA

Based on this structure, a kernel function must be launched with additional parameters that
specify precisely the size of the grid and block.

Getting ready

On the Wiki page http://wiki.tiker.net/PyCuda/Installation, the basic
instructions to install PyCuda on the main operative systems (Linux, Mac, and Windows) are
explained.

203

GPU Programming with Python

With these instructions, you will build a 32-bit PyCUDA library for a Python 2.7 distro:

1. The first step is to download and install all the components provided by NVDIA to
develop with CUDA (refer to https://developer.nvidia.com/cuda-toolkit-
archive) for all the available versions. These components are:

[m]

The CUDA toolkit is available at http://developer.download.nvidia.
com/compute/cuda/4_ 2/rel/toolkit/cudatoolkit 4.2.9
win 32.msi.

The NVIDIA GPU Computing SDK is available at http://developer.
download.nvidia.com/compute/cuda/4 2/rel/sdk/
gpucomputingsdk 4.2.9 win 32.exe.

The NVIDIA CUDA Development Driver is available at http://developer.
download.nvidia.com/compute/cuda/4 2/rel/drivers/
devdriver 4.2 winvista-win7_ 32 301.32 general.exe.

Download and install NumPy (for 32-bit Python 2.7) and Visual Studio C++ 2008
Express (be sure to set all the system variables).

Open the file msvc9compiler.py located at /Python27/1ib/distutils/. After
the line 641: 1d_args.append ('/IMPLIB:' + implib file), add the new
line 1d_args.append('/MANIFEST').

Download PyCUDA from https://pypi.python.org/pypi/pycuda.

Open Visual Studio 2008 Command Prompt, click on Start, go to All Programs |
Microsoft Visual Studio 2008 | Visual Studio Tools | Visual Studio Command
Prompt (2008), and follow the given steps:

1.
2.
3.

Go in the PyCuda directory.
Execute python configure.py.
Edit the created file siteconf .py:

BOOST_INC_DIR
BOOST_LIB_DIR

(]
(]

BOOST_ COMPILER = 'gcc43'!

USE_SHIPPED BOOST = True

BOOST_ PYTHON LIBNAME = ['boost python']

BOOST_ THREAD LIBNAME = ['boost thread']

CUDA_TRACE = False

CUDA_ROOT = 'C:\\Program Files\\NVIDIA GPU Computing

Toolkit\\CUDA\\v4.2"

CUDA ENABLE GL = False

CUDA ENABLE CURAND = True

CUDADRV_LIB DIR = ['${CUDA ROOT}/lib/Win32']
CUDADRV_LIBNAME = ['cuda'l

20

Chapter 6

CUDART LIB DIR
CUDART LIBNAME
CURAND LIB DIR '${cubA ROOT}/1ib/Win32']
CURAND LIBNAME ['curand']

CXXFLAGS = ['/EHsc']

LDFLAGS = ['/FORCE']

['${cUuDA_ROOT}/1lib/Win32"']
['cudart']
[

6. Finally, install PyCUDA with the following commands in VS2008 Command Prompt:

python setup.py build
python setup.py install

i T @

€@ widiacom [=] madhydro "B+ K 4R00 =

&I NVIDIA CUDA ZONE

CUDA Toolkit Archive

CUDA 7 Downloads

Previous releases of the CUDA Toalkit, GPU Computing SDK, documentation and develaper drivers can be found using ted - Parallel Computing

the links below. Please select the release you want from the list below, and be sure to check for

more recent production drivers appropriate for your hardware configuration.

L

Latest Release CUDAFAQ
[March 2015)

Archived Releases

[August 2014]
(April 2014)
(Juty 2013)
(0ct 2012)
(April 2012)
(Jan 2012)
(May 2011}
[Nov 2010)
(June 2010)
[March 2010)
[Sept 2009)

How to do it...

The present example has a dual function. The first is to verify that PyCUDA is properly installed
and the second is to read and print the characteristics of the GPU cards:

even mare
h awards for powered

The CUDA toolkit download page

import pycuda.driver as drv

drv.init ()

print "%d device(s) found." % drv.Device.count ()
for ordinal in range (drv.Device.count()) :

205

GPU Programming with Python

dev = drv.Device (ordinal)

)

print "Device #%d: %s" % (ordinal, dev.name())

)

print " Compute Capability: %d.%d" % dev.compute capability ()
print " Total Memory: %s KB" % (dev.total memory()//(1024))

After running the code, we should have an output like this:

C:\ Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyCudaInstallation.py

1 device(s) found.

Device #0: GeForce GT 240
Compute Capability: 1.2
Total Memory: 1048576 KB

The execution is pretty simple. In the first line of code, pycuda.driver is imported and then
initialized:

import pycuda.driver as drv
drv.init ()

The pycuda.driver module exposes the driver level to the programming interface of CUDA,
which is more flexible than the CUDA C "runtime-level" programming interface, and it has a few
features that are not present at runtime.

Then, it cycles into drv.Device.count (), and for each GPU card found, the name of the
cards and main characteristics (computing capability and total memory) are printed:

)

print "Device #%d: %s" % (ordinal, dev.name())
print " Compute Capability: %d.%d" % dev.compute capability ()

)

print " Total Memory: %s KB" % (dev.total memory()//(1024))

» PyCUDA is developed by Andreas Kléckner (http://mathema.tician.de/
aboutme/). For any other information concerning PyCUDA, you can refer to
http://documen.tician.de/pycuda/.

206

Chapter 6

How to build a PyCUDA application

The PyCUDA programming model is designed for the common execution of a program on a
CPU and GPU, so as to allow you to perform the sequential parts on the CPU and the numeric
parts, which are more intensive on the GPU. The phases to be performed in the sequential
mode are implemented and executed on the CPU (host), while the steps to be performed in
parallel are implemented and executed on the GPU (device). The functions to be performed in
parallel on the device are called kernels. The steps to execute a generic function kernel on the
device are as follows:
1. The first step is to allocate the memory on the device.
2. Then we need to transfer data from the host memory to that allocated on the device.
3. Next, we need to run the device:
1. Run the configuration.
2. Invoke the kernel function.
4. Then, we need to transfer the results from the memory on the device to the host
memory.

5. Finally, release the memory allocated on the device.

_— Allocate Memory > CPU MEMORY
Transfer Transfer
Memory Memory
to GPU toCPU
ol > GPU MEMORY
Running Device

The PyCUDA programming model

How to do it...

To show the PyCUDA workflow, let's consider a 5x5 random array and the following procedure:

Create the 5x5 array on the CPU.

Transfer the array to the GPU.

Perform a task on the array in the GPU (double all the items in the array).
Transfer the array from the GPU to the CPU.

ok N PR

Print the results.

207

GPU Programming with Python

The code for this is as follows:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy

Q
1]

numpy . random.randn (5, 5)
a.astype (numpy.float32)

Q
1]

a_gpu = cuda.mem alloc (a.nbytes)
cuda.memcpy_htod(a_gpu, a)

mod = SourceModule ("""
__global void doubleMatrix(float *a)

{

int idx = threadIdx.x + threadIdx.y*4;
alidx] *= 2;

}

nn n)

func = mod.get function("doubleMatrix")
func(a_gpu, block=(5,5,1))

a_doubled = numpy.empty like(a)

cuda.memcpy_ dtoh(a_doubled, a_gpu)

print ("ORIGINAL MATRIX")

print a

print ("DOUBLED MATRIX AFTER PyCUDA EXECUTION")
print a_doubled

The example output should be like this:
C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python
PyCudaWorkflow.py
ORIGINAL MATRIX
[[-0.59975582 1.93627465 0.65337795 0.13205571 -0.46468592]
[0.01441949 1.40946579 0.5343408 -0.46614054 -0.31727529]
[-0.06868593 1.21149373 -0.6035406 -1.29117763 0.47762445]
[0.36176383 -1.443097 1.21592784 -1.04906416 -1.18935871]
[-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313 1]

208

Chapter 6

DOUBLED MATRIX AFTER PyCUDA EXECUTION

[[-1.19951165 3.8725493 1.3067559 0.26411143 -0.92937183]
[0.02883899 2.81893158 1.0686816 -0.93228108 -0.63455057]
[-0.13737187 2.42298746 -1.2070812 -2.58235526 0.95524889]
[0.72352767 -1.443097 1.21592784 -1.04906416 -1.18935871]
[-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313 1]

The preceding code starts with the following imports:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

The import pycuda.autoinit statement automatically picks a GPU to run based on
its availability and number. It also creates a GPU context for the subsequent code to run.
If needed, both the chosen device and the created context are available from pycuda.
autoinit as importable symbols, whereas the SourceModule component is the object
where a C-like code for the GPU must be written.

The first step is to generate the input 5x5 matrix. Since most GPU computations involve large
arrays of data, the numpy module must be imported:

import numpy
a = numpy.random.randn (5,5)

Then, the items in the matrix are converted into a single precision mode, many NVIDIA cards
support only a single precision:

a = a.astype (numpy.float32)

The first operation that needs to be done in order to implement a GPU is to load the input
array from the host memory (CPU) to the device (GPU). This is done at the beginning of the
operation and consists of two steps that are performed by invoking the following two functions
provided PyCUDA:

» The memory allocation on the device is performed via the function cuda . mem
alloc. The device and host memory may not ever communicate while performing a
function kernel. This means that, to run a function parallelly on the device, the data
related to it must be present in the memory of the device itself. Before you copy data
from the host memory to the device memory, you must allocate the memory required
on the device: a_gpu = cuda.mem _alloc (a.nbytes).

209

GPU Programming with Python

» Copy the matrix from the host memory to that of the device with the following
function:

call cuda.memcpy htod : cuda.memcpy htod(a gpu, a).

Also note that a_gpu is one-dimensional and on the device, we need to handle it as such.
All these operations do not require the invocation of a kernel and are made directly by the
main processor. The SourceModule entity serves to define the (C-like) kernel function
doubleMatrix that multiplies each array entry by 2:

mod = SourceModule ("""
__global__ void doubleMatrix(float *a)
{
int idx = threadIdx.x + threadIdx.y*4;
alidx] *= 2;

}

nn n)

The global qualifier directive indicates that the function doubleMatrix will be
processed on the device. Only the CUDA nvcc compiler will perform this task.

Let's take a look at the function's body:
int idx = threadIdx.x + threadIdx.y*4;

The idx parameter is the matrix index identified by the thread coordinates threadIdx.x
and threadIdx.y. Then, the element matrix with the index idx is multiplied by 2:

alidx] *= 2;

Note that this kernel function will be executed once in 16 different threads. Both the variables
threadIdx.x and threadIdx.y contain indices between 0 and 3 and the pair is different
for each thread. Threads scheduling is directly linked to the GPU architecture and its intrinsic
parallelism. A block of threads is assigned to a single Streaming Multiprocessor (SM), and
the threads are further divided into groups called warps. The size of a warp depends on the
architecture under consideration. The threads of the same warp are managed by the control
unit called the warp scheduler. To take full advantage of the inherent parallelism of SM,

the threads of the same warp must execute the same instruction. If this condition does not
occur, we speak of the divergence of threads. If the same warp threads execute different
instructions, the control unit cannot handle all the warps. It must follow the sequences of
instructions for every single thread (or for homogeneous subsets of threads) in a serial mode.
Let's observe how the thread block is divided into various warps, threads are divided by the
value of threadIdx.

The threadIdx structure consists of three fields: threadIdx.x, threadIdx.y, and
threadIdx. z.

Chapter 6

-]

Thread blocks subdivision: T(x,y) where x = threadldx.x and y = threadldx.y

We can see that the code in the kernel function will be automatically compiled by the nvcc
CUDA compiler. If there are no errors, the pointer of this compiled function will be created. In
fact, mod.get function ("doubleMatrix") returns an identifier to the func function
that we created:

func = mod.get function("doubleMatrix ")

To perform a function on the device, you must first configure the execution appropriately. This
means that you need to determine the size of the coordinates to identify and distinguish the
thread belonging to different blocks. This will be done using the block parameter inside the
func call:

func(a _gpu, block = (5, 5, 1))

The block = (5, 5, 1) function tells us that we are calling a kernel function with the a_
gpu linearized input matrix and a single thread block of the size 5 threads in the x direction,

5 threads in the y direction, and 1 thread in the z direction, 16 threads in total. This structure
is designed with the parallel implementation of the algorithm in mind. The division of the
workload results in an early form of parallelism that is sufficient and necessary to make use of
the computing resources provided by the GPU. Once you've configured the kernel's invocation,
you can invoke the kernel function that executes instructions parallelly on the device. Each
thread executes the same code kernel.

After the computation in the GPU device, we use an array to store the results:

a_doubled = numpy.empty like(a)
cuda.memcpy dtoh(a_doubled, a_ gpu)

This will be printed as follows:

print a
print a doubled

